

R9975terstruments

For almost a century, ROOTS®
meters have been used for billing of
commercial and industrial gas loads.
Accuracy, dependability, and low
maintenance are of key importance
in custody transfer measurement
applications. The time-proven
ROOTS® meter is the preferred
rotary positive displacement gas
meter in distribution, transmission
and production segments for
accurate measurement of gas
from the well to the burner.

To meet the evolving needs of our customers, our product line has expanded to include a large variety of control and measurement equipment.

ROOTS Meters & Instruments is much more than just a meter supplier. We offer a wide range of ROOTS® products and services.

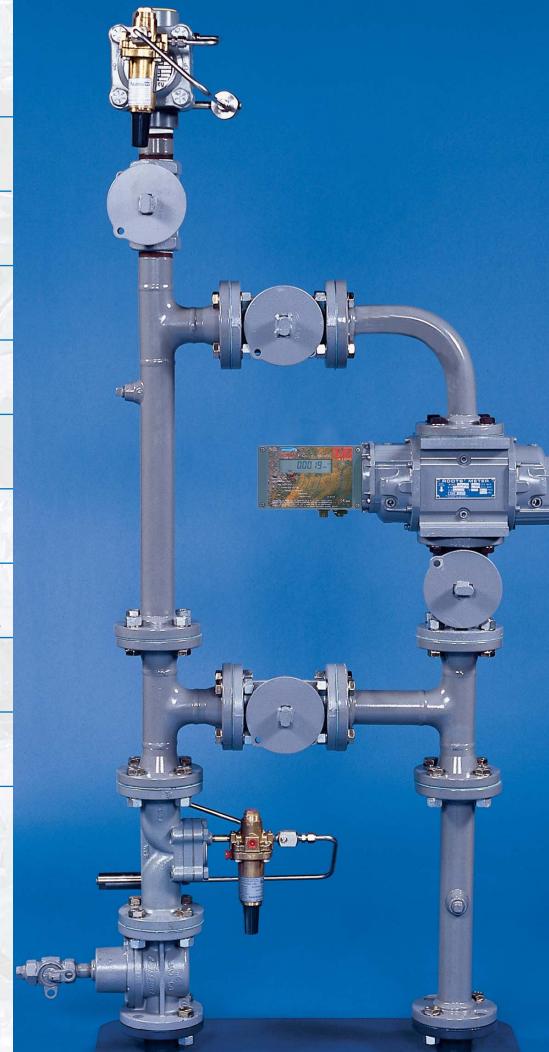
Rotary Meters

Electronic Instrumentation

Transfer Provers

Product
Remanufacturing
Services

Test Equipment


Meter Stations

Meter Sets

Meter Set Components

On-Site Field Training Courses

Factory Training Schools

The ROOTS® Meter Advantage

Proven Accuracy

- Volumetric accuracy is permanent and non-adjustable
- Measuring characteristics established by the precision machined contours of non-wearing fixed and rotating parts
- Durable components ensure a long life expectancy under normal operating conditions
- Wide rangeability is maintained throughout the meter's operating range, regardless of pressure and flow

Meters For Commercial & Industrial Applications

- Line Mount Meters
- Foot Mount Meters
- High Pressure Meters

Magnetically Coupled Accessory Units

- Large variety of readout and output options
- Non-pressurized and interchangeable modular design simplifies conversion between meter versions
- Permanently lubricated Series 3 Accessories combine a long life expectancy with a reduction in maintenance
- Commonality of Series 3 Accessory components reduces inventory requirements

Full Line of Electronic Instrumentation

- Pressure (P), Temperature (T), and PT Correctors
- Temperature or Temperature with Fixed Pressure Factor (FF) Compensators
- Solid State Pulsers to interface with Automated Meter Reading (AMR) devices and for remote readings
- Loggers for Pressure, Volume and Temperature

Customer Service

Our unsurpassed customer service is provided through the combined efforts of our Customer Service, Technical Support, and Product Services Departments. Each department takes pride in their ability to deliver courteous and professional care to all customers in a timely manner. As described below, the departments are structured to efficiently support all customer service requirements:

- Customer Service representatives for inquiries and order placement
- Technical Services staff for product application assistance and training
- Product Services Department for remanufacturing and testing services

The ROOTS® Meter Operating Principle

The ROOTS® meter is designed to measure the volume of gases and gas mixtures with a high degree of accuracy. The industry accepted rotary type positive displacement operating principle ensures permanent, non-adjustable accuracy by using precision machined two-lobe impellers encased within a rigid measuring chamber.

Unlike other meter types, measurement accuracy is not affected by changes in gas specific gravity, pressure, or fluctuating flow. ROOTS® meters may be used from a few ounces to full capacity up to the meter's maximum pressure rating with highly accurate measurement over a wide operating range. This equates to a lower total cost.

The condition of a ROOTS® rotary meter can be verified by performing a differential rate test while the meter is still in service. This simple and cost-effective preventive maintenance procedure contributes to a significant reduction in the wholelife cost of the meter.

Precision machined for exceptional accuracy

As shown in the picture, two contra-rotating impellers of two-lobe or "figure 8" contour are encased within a rigid measuring chamber, with inlet and outlet connections on opposite sides. Precision machined timing gears keep the impellers in correct relative position. Optimal operating clearances between the impellers, cylinder and headplates provide a continuous, non-contacting seal.

ROOTS® Meter Product Line

A complete line of rotary meter sizes are available to measure a wide range of gas volumes for the majority of commercial and industrial applications in custody transfer applications. Refer to the Meter Sizing Chart in this brochure to determine the correct meter size for cost effectiveness and accurate measurement.

ROOTS® meters are suitable for handling most types of clean, common gases at either constant or varying flow rates and pressure. They are ideal for applications throughout the meter's operating range, from a few ounces to full maximum allowable operating pressure.

Our meters are widely recognized for their highly accurate measurement capabilities at both the low and high end of their rated capacity. The meter's rangeability (ability to measure gas over a wide flow range within a specified accuracy) provides the best over-all measurement accuracy on a "day-after-day" basis.

ROOTS® Series B3 Line Mount Meters

8C/11C/15C

2M/3M/5M

7M/11M/16M

23M/38M/56M (23M/38M pictured)

Four Inch 23M232

Right Size the Meter to the Application

Series B3 meters are designed to provide accurate gas measurement over widely fluctuating flow, pressure, and temperature conditions. For further versatility, the five smallest meter sizes (8C through 3M) have 2" (50 mm) flanged connections, and a 6-3/4" (171 mm) flange-to-flange dimension. If application requirements change, this unique, cost-effective feature allows a quick and easy meter exchange without the need to re-pipe the meter set. Other key features include:

- Capacity ratings from 800 CFH to 56,000 CFH (22,6 m³/h to 1,600 m³/h)
- Maximum operating pressure rating of 175 PSIG (12 Bar).
- Models 8C through 2M are available with a 200 PSIG (13,8 Bar) rating upon request.
- Operating temperature range from -40° to +140F (-40°C to +60°C)

For operating requirements beyond those listed, please contact your Roots Meters & Instruments representative.

Four Inch 23M232 Meter

Our new 23M232 includes four inch flanged connections and a 232 PSIG (16 bar) maximum working pressure. This new design complements our standard six inch 23M175. With a maximum capacity of 385 MSCFH (10,895 Nm³ per hour) the new 23M is an ideal measurement solution for a wide array of applications.

ROOTS® Series 3 Accessory Units

CTR

TC

CD/TD

Solid State Pulser

Designed for low maintenance and a long service life

- Interchangeability among Series B meter bodies of the same size
- Permanently lubricated for long life and virtually maintenance-free operation
- Modular design allows a quick-change to a different version at a lower overall cost
- Durable, weather resistant cover with improved sealing capability
- Versatile and configurable odometer masking
- Universal Instrument Drive (ID) assembly one size fits all 8C-56M Series B Meters
- Quick and easy field installation of the low cost Solid State Pulser
- Available with factory pre-installed magnets for quick installation of the Solid State Pulser or Model 5 Prover Field Counter Pulser Module

Counter (CTR)

An 8 digit non-compensated index registers displaced volume in Actual Cubic Feet (ACF) or in Actual Cubic Meters (m³).

Temperature Compensated (TC)

Temperature compensation, available in meter sizes 8C-16M, is accomplished by a mechanical computer with a spiral bi-metallic thermocouple (probe) located in a sealed temperature well at the meter inlet. Series 3 TC Units provide corrected gas volume readings to a 60° F (15° C) base temperature for readout in Standard Cubic Feet (SCF) or Normal meters Cubed (Nm³) between flowing temperatures of -20°F and + 120° F (- 29° C and + 49° C).

Counter or Temperature Compensated with Instrument Drive (CD/TD)

The Universal Instrument Drive (ID) Assembly adapts to the CTR and TC Accessory for installation of a corrector, chart recorder, or other externally mounted, mechanically driven device. The ID Assembly is mechanically linked to the CTR/TC mechanical gear reduction unit. One revolution of the instrument drive dog represents a specific displaced volume measured by the meter.

Solid State Pulser

The ROOTS® solid state pulser mounts directly to a CTR/TC Unit, generating low frequency pulses representing volumetric information for remote reading. Mechanical switches have been eliminated for maximum reliability. No battery or maintenance is required.

ROOTS® High Pressure Meters

Series B3-HPC

Removeable B3-HPC Cartridge

Series B3-HP

7MI440

Series B3-HPC (High Pressure Cartridge) Meters

This meter line features a common cast-steel housing for the 1M (1000 ACFH) and 3M (3000 ACFH) sizes of aluminum cartridges. The meters are available with either an ANSI Class 300# flange (740 PSIG) or an ANSI Class 600# flange (1480 PSIG).

The cartridges are field replaceable and are interchangeable between housings regardless of the pressure rating on the housing. As an option, a self-resetting full flow internal bypass is available on new meters and on replacement cartridges. Since this meter utilizes the Series 3 Accessory Units, a full line of index options are available.

Series B3-HP (High Pressure) Meters

For lower pressure loads, the 1M300 (1000 ACFH) and 3M300 (3000 ACFH) are viable alternatives for pressures up to 300 PSIG. Based on the B3 meter line, the B3-HP meters offer extremely low start and stop rates and a compact design with a 6-3/4" flange-to-flange dimension and a much lower weight than traditional high pressure meters. This is achieved by using aluminum for all major meter components. The Series B3-HP meters mate with ANSI 300# flanges and are easily installed by one person without the need for a lift or hoist.

7M1440 High Pressure Meter

7M1440 meters are designed for higher capacity applications (7000 ACFH) with a maximum allowable operating pressure of 1440 PSIG. The materials of construction are cast ductile iron and cast steel to meet the demands of the higher flow rates and pressures.

ROOTS® Expanded Meter Line

Series Z

Series A (LM-MA)

Series AI

B3-VRM

Series Z Compact Meters

Ideal for small commercial loads at pressures up to 15 PSIG (1 Bar), the aesthetically pleasing 5C15 (500 ACFH) and 8C15 (800 ACFH) meters are easy to install and conceal. Series Z meters provide excellent measurement accuracy starting at "pilot loads" and continuing throughout the range of the meter. To match the meter configuration to the application, the user selects the following parameters when ordering:

- Dial or Odometer type Index
- Sealed or Vented Index
- Standard (Atmospheric) or 2 PSIG Compensated Index
- Top or Bottom Inlet
- Sprague 4 (male), 45 Light (male), or 1–1/2 inch NPT (female) Connections
- Optional Inlet Strainer / Screen

Series A (LM-MA) Meters

The 8C175 compact meter, like the Series Z, is also ideal for small commercial applications, but with a higher pressure rating. This meter is rated for a 175 PSIG (12 Bar) working pressure.

Series AI Foot Mount Meter

The 102M125 Foot Mount meter is used for the measurement of high volume industrial gas loads for capacities up to 965.3 MSCFH at 125 PSIG (27,941 Nm³/h at 8,6 Bar).

B3-VRM Vapor Recovery Meter

Rated for a maximum capacity of 3000 actual cubic feet per hour, the B3-VRM meters are specifically designed and tested for vapor recovery applications and conform to the California Air Resources Board specifications TP-201.1, TP-201.1A, TP-201.2, and TP-201.5, as applicable. The extremely low pressure drop associated with the ROOTS positive displacement meter makes this meter ideal for the accurate measurement in low pressure recovery systems. Odometers on the vapor recovery meters are marked at 0.02 cubic foot increments, which allows accurately estimated readings in increments of 0.01 cubic feet. All B3-VRM meters are supplied with a 7 point certified accuracy curve for reference.

ROOTS® Instruments

ID Mount Version

Micro Modem

Micro Logger

ROOTS® Micro Corrector

The ROOTS® Micro Corrector is part of the Micro series line of electronic products from Dresser. The Micro Corrector, Model PTZ+Log, calculates corrected volume by measuring live temperature (T), pressure (P) and supercompressibility (Z). The unit has data logging capability of 35 days of hourly data, 48 days of daily and 15 months of monthly, as well as a 128 entry audit trail which records any unit configuration changes that affect the measurement equation.

Also, available in P+Log and T+Log models, the ROOTS® Micro Corrector is designed to be the best value in the industry. It is available in a variety of mounting styles including instrument drive, wall mount and pipe mount. The ROOTS® Micro Corrector offers versatility at a competitive price.

Micro Modem

- A full-duplex, two wire, 300-2400 baud dial-up modem
- Compatible with CCITT V.22bis / V.22 / V.21, and Bell 212A / 103 data communications standards
- 5 to 15 VDC input power
- 75 mA (typical) current
- Operating temperature range of -40°F to 185°F (-40°C to 85°C)

Micro Logger

The ROOTS Micro logger represents an exciting addition to the Dresser electronic instrumentation product line. Utilizing proven technology pioneered in the Dresser Micro Corrector, the Micro Logger offers value, accuracy and a safe solution to your gas network monitoring needs.

- Pressure: 3 transducers up to 1450 PSIG
- Temperature: standard 4-wire PRT 100
- Flows: 2 LF pulses

ROOTS® Instruments

ROOTS® instruments offer the latest technology in electronic pressure and temperature correction. As an added benefit, the ROOTS® volume temperature compensator and ROOTS® volume correction computer can be mounted integral to most ROOTS® meters.

IMC/W

IMC/C

ROOTS® Micro Corrector Model IMC/W

The ROOTS® Micro Corrector model IMC/W is an integrally mounted version of the Micro series of electronic correctors from Dresser. You can directly mount the IMC/W onto Series A or Series B ROOTS® meter bodies, and the IMC/W accessory unit can be rotated 355 degrees to allow for multiple viewing angles. The IMC/W includes all features found with the meter mounted ID version. Additionally the IMC/W has the capability to sense forward and reverse gas flow. Temperature and volume are sensed internally, while pressure sensing can be either internal or external to the unit.

The IMC/W is also available in a temperature only version as an alternative to mechanical rotary meter TC devices. The IMC/W-T measures live temperature and allows the user to configure a fixed factor pressure. With pulse outputs as standard, the IMC/W-T is a value-added option to mechanical TC.

ROOTS® Meter with Integral Micro Corrector Model IMC/C

The ROOTS® Micro Corrector, Model IMC/C incorporates the same proven electronics and capability of the Micro Corrector, in an integral mount configuration that can be mounted on the ROOTS® Series B meters, sizes 8C through 16M. The IMC/C has an uncorrected mechanical counter, and additionally — temperature, pressure and volume are all sensed internally to the system. This offers a lower cost alternative to the instrument drive meter/corrector combination. Internal mounting of sensors also helps to eliminate the possibility of tampering with these sensors. The IMC/C is available in Models PTZ+Log and T+Log.

Model 5 ROOTS® Provers

Model 5 Transfer Provers feature an integrated computer controlled system for verification and testing of rotary, diaphragm, and turbine gas meters. After the field meter is connected to the Prover and the test sequence is selected, the remainder of the operation is "hands-off." Test sequencing is automatically controlled by the software settings and the test results are displayed on the computer screen.

For ease of testing and recording, the Model 5 Prover system will:

- Store unlimited predetermined field meter test configurations
- Perform and display all calculations at the end of each test and allow for saving to disk
- Provide user-friendly menu prompts
- Run a system self-check prior to each test
- Allow easy access to extensive Help Files

The primary components for all Model 5 Prover systems include highly accurate ROOTS® master meters as measurement standards, a personal computer (not included) for operation of the system software, easy-to-use Windows®-based software, and a blower system to provide a stable air flow through the system.

10M or 2M/10M Prover

2M:

 10M or 2M/10M master meters Capacities:

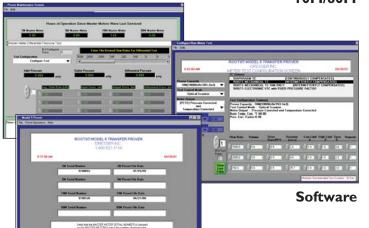
10M: 100 to 10,000 ACFH (11 to 283 m³/h)

35 to 2,300 ACFH (1 to 57 m³/h)

- 2M Meter mounted in a "Piggy-Back" configuration
- Suitable for both field and shop use
- Easily transported in a van or truck

2M/10M

20M5M Prover


The cart-mounted prover gives you the increased capability to prove rotary, turbine and diaphragm meters up to 20,000 acfh, while occupying minimal floor space.

20M/5M

ROOTS® Provers & Accessories

I0M/80M

Open-Num Configure/Num Proceedings of Test Meter Last Standard

Field CTR Pulser

RS-PB

Acoustic Filter

10M80M Proving System

10M and 80M master meters

Capacities:

80M: 1,600 to 80,000 ACFH

(45 to 2,265 m³/h)

10M: 100 to 10,000 ACFH

(11 to 283 m³/h)

- Skid Mounted Shop System
- Ideal for testing large capacity rotary and turbine-type gas meters

Windows®-based Software

Easy-to-use software with icons and menus typical of Windows-based programs allow you to increase your productivity and work more intuitively with the computer. The new software is designed for all Model 5 Prover Systems and is compatible with Windows® 95, 98, 200, ME, XT and NT 4.0.

Field CTR Pulser Module

When prover testing a Series B3 CTR Version "pulser ready" meter, this module can be quickly snapped onto the Lexan® cover and connected to the prover Field Junction Box. The set-up time for the Module is much quicker than the RS Optical Scanner and the human inaccuracies of a manual test are eliminated.

RS Optical Scanner

The optional RS Optical Scanner is used to facilitate meter testing using an automatic testing sequence. This eliminates the potential for human error associated with a manual test. The Scanner can be used on dial indexes and odometers with black and white graduated marks.

Acoustic Filter

When testing turbine-type gas meters with a transfer prover, an Acoustic Filter should be installed between the Field Meter (meter under test) and the ROOTS® master meter. The Acoustic Filter reduces or eliminates the resonance phenomena induced by pulsation from the master meter at most flow rates. An Acoustic Filter is ideal for shop use with a Model 5 ROOTS® prover.

ROOTS® Optional Electronic Products

XMTR

Solid State Transmitter (XMTR)

- High frequency pulse output
- 100 pulses per input shaft revolution
- Solid State circuitry provides a long life expectancy
- Mounts on any standard Instrument Drive
- 10 to 15 VDC

EC-2

EC-2

- Utilizes analog temperature, pressure, and flow inputs to yield corrected volume
- · Displays compensated rate and total flow
- Flow rate, temperature, and pressure alarms
- Pulse, 4-20 mA, and RS-232 outputs available
- 110 VAC or 220 VAC available

DM-2

DM-2

- Totalizes analog flow inputs
- Displays Rate and Total
- · Corrects for fixed pressures
- 4-20 mA or RS-232 outputs available
- 110 VAC or 220 VAC available

Model 400/405

Model 400 Totalizer

- Totalizes and displays analog flow inputs
- 3 volt lithium battery
- Manufactured by Eaton

Model 405 Totalizer/Ratemeter

- Totalizes analog flow inputs
- Displays Rate and Total
- 3 volt lithium battery
- Manufactured by Eaton

ROOTS® Test Equipment

Manometer

Smart Manometer

The Smart Manometer is the first pressure measuring instrument with an accuracy of \pm 0.025% of full scale at a truly low cost. As a replacement for glass manometers, this microprocessor based system, manufactured by Meriam Instrument, has been designed for the measurement of differential pressures across a rotary meter.

Pulse Loop Tester

Pulse Loop Tester

The ROOTS® pulse loop tester is a battery-powered instrument designed for testing and troubleshooting one and two channel pulse output systems. LED indicators display the contact state of one or two Form A or Form C switches. An internal buzzer can also be enabled to sound when a pulse occurs through selected channels.

Leak Tester

Accessory Unit Leak Tester

Performing a leak test on a newly installed ROOTS® accessory unit allows a user to verify proper installation by applying a static pressure load inside the accessory. A properly installed unit will maintain the selected pressure for a minimum of 60 seconds. The test equipment attaches easily to any of the ROOTS® Series 1 (LM-MA) or Series 2 (TQM) accessories.

ROOTS® Meter Sets & Mooney Regulators

Pre-Fabricated Sets

A full line of meter set components are available for a one-stop-shopping approach to meter set design and installation. Reduce your installation cost with a professionally designed and tested ROOTS® meter set.

Pre-Fabricated Meter Sets

Dresser offers both Standard and Customer Specified designs. These modular meter sets are packaged for economical shipping and storage. Benefits include design standardization, reduced inventories, and lower overhead costs.

Quick-Change Kits

Quick-Change kits provide an easy, cost-effective method of changing from a diaphragm to a ROOTS® meter. Each kit provides all the necessary piping and hardware required for a fast and smooth change over.

Quick Change Kits

Mooney Regulators

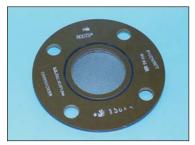
Mooney Regulators

High Performance, ease of maintenance, low minimum differential and versatility are important characteristics of the FLOWGRID™ Regulator. This complete line of pilot-operated regulators is ideal for pressure reducing, back-pressure and flow control applications. Mooney, a recognized name in the gas industry, is an operation of Roots Meters & Instruments division.

ROOTS® Accessories

Ultraseal® Valve

ROOTS® Ultraseal® Gas Meter Valves


Ultraseal® valves are permanently lubricated and bi-directional. They meet NPFA standards and continue to maintain a bubble-tight seal after qualification testing to over 10,000 cycles. Torque values remain low even at subzero temperatures. Locking plates are also available.

Pipeline Strainer

ROOTS® Pipeline Strainers

These strainers are designed to protect meters and other precision devices from the damaging effects of entrained system debris. A low pressure drop is achieved through a large element area and venturi port design. The debris bowl is tapped for cleaning.

Gasket Strainer

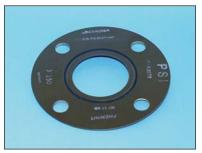
ROOTS® Gasket Strainers

Using a 20 mesh stainless steel screen, the Gasket Strainer helps protect against potential damage to precision pipeline measurement and regulation equipment caused by occasional introduction of weld slag, plastic pipe shavings, or other debris.

Restricting Orifice Plates

Restricting Flow Orifice Plates

Sized orifice plates provide low cost protection against meter overspeed. The plates are designed to choke gas flow at 100% for meters rated over 300 psig. Plates are installed 2 to 4 pipe diameters downstream for maximum effectiveness.



Companion Flange Assemblies

Companion Flange Assemblies

These kits include all the equipment necessary for mounting a meter in a pipeline. The kit consists of flanges, coated flange bolts, and gaskets.

ROOTS® Accessories

Gaskets

Flange Gaskets

LineBacker™ gaskets, with their unique sealing element, use the lowest possible clamp and compressive load to eliminate flange leaks. The patented design also reduces the problems involved in sealing misaligned flanges.

Bolts

Coated Flange Bolts

These bolts have a lubricious, polymer-based coating to help prevent galling of the threads in the meter body.

Pete's Plug II®

Pete's Plug II® Test Plug

Allows user to take pressure and temperature readings quickly while eliminating the cost of leaving gauges or temperature indicators in line. Pete's Plug II® test plug is still the only pressure and temperature test plug with two self-closing valves and is rated to a maximum pressure of 500 psig at 200°F.

Meter Oil

ROOTS® Meter Oil

Approved for use in all ROOTS® meters. The oil is packaged in quantities from 4 ounces to 55 gallons.

Thermowell

Thermowell

Thermowells provide protection for temperature measurement devices inserted in a gas stream. Available in 4 and 6 inch lengths with a 1 inch NPT insertion connection and a 1/2 inch NPT opening.

ROOTS® Services

Product Services

Our Product Services Department offers repair, remanufacturing, testing and calibration service for all ROOTS® meters, provers, and instrumentation. At Roots Meters & Instruments, our focus is on customer satisfaction. Let the experts handle your ROOTS® products repair and calibration needs.

The overall cost effectiveness of factory service is enhanced by:

- Standardized and competitive service levels
- Specialization in contract services
- Inspection for warranty and upgrades
- Line Mount Meters returned freight prepaid to the first point of delivery within the United States.

Educational Services

Training Is An Investment In Your Company's Future

The down time associated with servicing a ROOTS® meter or instrument can be drastically reduced by ensuring qualified personnel are available to perform the necessary work. A variety of educational programs are available on topics ranging from General Meter Maintenance to Model 5 ROOTS® prover training. One and two day on-site training is available as well as a three-day factory training school at the Roots Meters facility. All of these programs are designed to expand the capabilities of operations and maintenance personnel.

Roots On-Site Field Training Courses and Factory Training Schools are available to users of ROOTS® products in the Natural Gas Industry (Local Distribution, Transmission, & Production companies).

Industrial users and accounts covered by an authorized DRESSER Distributor should contact their supplier for all training and service requirements.

FLOSystems

This business unit of Roots Meters & Instruments Division offers complete design and market services for meter and regulator stations worldwide. Backed by many years of experience, we can design a meter station to customer specifications, or provide a complete meter station ready for installation.

Imperial Sizing Charts

LINE MOUNTED 175 5M175 7M175 11M175 16M175 2 000 5000 11000 16000 2 Corrected Capacity at Metering Pressure — in MSCFH
7.3 11.5
11.6 18.2
14.0 22.0
18.7 29.4
21.1 33.2
30.6 48.1
40.1 63.0
44.9 70.5
49.6 78.0
59.1 92.9
63.9 100.4
66.2 104.1
71.0 111.6
78.1 122

S
_
0
E
∍
~
_
2
\leq
9
Z
Z
ᇙ

5M1480

HIGH PRESSURE METERS

3M300

1M1480

1M740

1M300

Corrected Capacity at Metering Pressure — in MSCFH

To select the proper meter size, use the Minimum Operating Pressure and the Maximum Instantaneous Hourly Flow Rate. Do not exceed meter's maximum allowable operating pressure.

To prevent oversizing of a meter, sizing should be based upon the total connected load giving consideration to the load diversity. When using this method to size a meter, a selected diversity factor times the total connected load will be used as the Maximum Instantaneous Flow Rate for sizing purposes.

A diversity factor of 0,85 is commonly used for a single application where two or more major appliances are in use (i,e, boilers, furnaces, space heaters, etc.).

66.2 78.1 90.0 102 126

47.3 55.8 64.3 72.8 89.8

> 33.5 38.6 43.7 53.9

> 33.5 38.6 43.7 53.9

> > 43.7 53.9

14.6 18.0 21.3 24.7 34.9 41.7 51.2

12.9

9.5 11.2 12.9 14.6 18.0 21.3 24.7 34.9 41.7

18.0

125 150 175 200 250 250 330 330 500 600 740 800 900 1200

28.4 33.5 38.6 64.0 74.2

As the number of appliances considered when determining a connected load increases, the diversity factor will typically decrease. For applications such as multiple ranges and water heaters, some

examples of commonly used diversity factors are:

Factor*	6.0	0.83	
Oty	9	∞	
Factor	_	0.85	
Otty	0-2	7	

149 173 244 292 359 387 387 435 577

107 124 175 209 256 256 276 310 412 508

64.0 74.2 105 105 125 154 166 186 247 305

> 55.3 62.1 82.4 102

* The diversity factors listed above are estimates. For proper sizing, consult your company or industry standards for determining accepted values.

Ċ	ENERGY VALUE	VALUE
5	Gas	BIU/Cu, Ft,
⋖	Acetylene	1498
m	Butane	3200
ш	Ethane	1758
ш	Ethylene	1606
2	Methane	997
2	Natural	965/1055
а-	Propane	2550

Metric Sizing Charts

							LINE	LINE MOUNTED							Foot Mount
MODEL		8C175* 110	8C175*	11C175*	156175*	2M175	3M175	5M175	7M175	11M175	16M175	23M175	38M175	56M175	102M125
CIVITYO		Also Availa	anie witii	200 F 310 N dt.	731 Natilig (13,0 DAN); (13/3 Kµd); (14,1 Kg/ciliz)	(13/3 rpa); (.	14,1 ng/cili2)	1 40	000	010	AEO	0 2 3	1000	1000	J00C
KAIING			0,22	31	74	/c .		147	007	310	420	000	1000	1000	0007
PSIG	Bar	кРа			Corr	ected Caps	Corrected Capacity at Metering Pressure – in Nm³/H	ering Press	ure – in Nm	₩,					
1			23,7	32,6	44,4	59,2	8,88	148,0	207,2	325,5	473,5	2,089	1124,6	1657,3	3018,6
m	0,21	21	8'92	36,8	50,2	6'99	100,3	167,2	234,1	367,9	535,1	769,3	1270,9	1873,0	3411,5
2			29,8	41,0	55,9	74,6	111,9	186,5	261,1	410,3	8,965	822,8	1417,3	2088,7	3804,3
10			37,5	51,6	70,3	93,8	140,7	234,5	328,3	515,9	750,4	1078,7	1782,1	2626,3	4783,6
15			45,2	62,2	84,8	113,1	169,6	282,6	395,7	621,8	904,4	1300,1	2148,0	3165,5	5765,7
20			52,9	72,7	99,2	132,3	198,4	330,6	462,9	727,4	1058,0	1520,9	2512,8	3703,1	6745,0
25			9,09	83,3	113,6	151,5	227,3	378,8	530,3	833,3	1212,1	1742,4	2878,7	4242,3	7727,1
30			68,3	93,9	128,0	170,7	256,1	426,8	597,5	938,9	1365,7	1963,2	3243,5	4780,0	8706,4
40			83,7	115,0	156,9	209,2	313,8	522,9	732,1	1150,4	1673,4	2405,5	3974,3	5856,8	10667,7
20			99,1	136,2	185,7	247,6	371,4	619,1	2'998	1362,0	1981,0	2847,7	4705,0	6933,6	12629,1
09			14,4	157,3	214,6	286,1	429,1	715,2	1001,3	1573,5	2288,7	3290,0	5435,7	8010,5	14590,5
70			29,8	178,5	243,4	324,5	486,8	811,4	1135,9	1785,0	2596,4	3732,3	6166,4	9087,3	16551,9
80			45,2	199,7	272,3	363,0	544,5	907,5	1270,5	1996,5	2904,0	4174,6	6897,1	10164,2	18513,3
06			9,09	220,8	301,1	401,5	602,2	1003,7	1405,1	2208,1	3211,7	4616,8	7627,8	11241,0	20474,7
100			75,9	241,9	329,9	439,9	629,8	1099,7	1539,5	2419,3	3518,9	5058,5	8357,5	12316,3	22433,2
110			91,3	263,1	358,7	478,3	717,5	1195,8	1674.1	2630,8	3826,6	5500,7	9088,2	13393,1	24394,6
120			7,90	284,2	387,6	516,8	775,2	1292,0	1808,7	2842,3	4134,3	5943,0	9818,9	14469,9	26356,0
125			14,4	294,8	402,0	536,0	804,1	1340,1	1876,1	2948,2	4288,3	6164,5	10184,8	15009,1	27338,1
135			29,8	315,9	430,8	574,4	861,7	1436,1	2010,6	3159,4	4595,5	6606,1	10914,4	16084,4	
150			52,9	347,7	474,1	632,2	948,2	1580,4	2212,6	3476,9	5057,3	7269,8	12011,0	17700,5	
175	12		91,4	400,6	546,3	728,4	1092,6	1821,0	2549,4	4006,1	5827,1	8376,5	13839,4	20394,9	
200			329,6	453,3	618,1										
		-						DDFCCIIDE METERS	ILTERS						

	7M1480	200		1876,1	2212,6	2549,4	2884,4	3558,4	4230,4	4904,5	6922,5	8268,6	10153,9	10960,7	12306,7	16342,9	20121,4
	5M1480	142		1340,1	1580,4	1821,0	2060,3	2541,7	3021,7	3503,2	4944,7	5906,1	7252,8	7829,1	8790,5	11673,5	14372,4
	3M1480	82		804,1	948,2	1092,6	1236,2	1525,0	1813,0	2101,2	2966,8	3543,7	4351,7	4697,4	5274,3	7004,1	8623,4
	3M740	82	in Nm³/H	804,1	948,2	1092,6	1236,2	1525,0	1813,0	2101,9	2966,8	3543,7	4351,7				
E METERS	3M300	82	Pressure -	804,1	948,2	1092,6	1236,2	1525,0	1813,0								
IGH PRESSURE METERS	1M1480	28	Corrected Capacity at Metering	268,0	316,1	364,2	412,1	508,3	604,3	9'00'	6'886	1181,2	1450,6	1565,8	1758,1	2334,7	2874,5
₹	1M740	28	cted Capacit	268,0	316,1	364,2	412,1	508,3	604,3	700,6	988,9	1181,2	1450,6				
	1M300	28	Corre	268,0	316,1	364,2	412,1	508,3	604,3								
			kPa	862	1034	1207	1379	1724	2068	2413	3447	4137	5102	5516	6205	8274	10204
	MODEL	RATING	Bar	9,8	10	12	14	17	21	24	34	41	51	22	62	83	102
			PSIG	125	150	175	200	250	300	350	200	009	740	800	900	1200	1480
															I		

Roots® G-Rating Sizing Charts

							LINE MOUNTED	UNTED					
	MODEL	Ē		616	625	640	665	6100	6160	6250	6400	6650	61000
40	BASE RATING (m³/h)	NG (m³/h)		25	40	65	100	160	250	400	650	1000	1000
METER (Bar	R OPERATI KPa	NG PRESSURE kg/cm2	RE PSIG										
0,07	6,9	0,07	1	26,1	41,8	6,79	104,5	167,2	270,7	418,0	679,3	1045	1672
0,21	20,7	0,21	က	29,5	47,2	76,8	118,1	189,0	305,9	472,4	7,797	1181,0	1889,6
0,34	34,5	0,35	2	32,9	52,7	85,6	131,7	210,7	329,3	526,8	8560,5	1317,0	2107,2
69'0	0,69	0,70	10	41,4	66,2	107,6	165,6	265,0	414,0	662,4	1076,4	1656,0	2649,6
	100	1,02	14.5	48,9	78,2	127,1	195,5	312,8	488,8	782,0	1270,8	1955	3128
1,5	150	1,53	22	61,5	98,4	159,8	245,9	393,5	614,8	983,7	1598,5	2459,2	3934,7
2	200	2,04	29	73,7	117,8	191,5	294,6	471,4	736,5	1178,4	1914,9	2946	4713,6
3	300	3,06	44	98,5	157,6	256,0	393,9	630,2	984,7	1575,5	2560,2	3938,8	6302,0
4	400	4,08	28	122,9	196,6	319,5	491,5	786,4	1228,8	1966,0	3194,8	4915	7864
2	200	5,10	73	147,8	236,5	384,3	591,2	945,9	1477,9	2364,6	3842,5	5911,6	9458,5
9	009	6,12	87	172,1	275,4	447,5	688,4	1101,4	1721,0	2753,6	4474,6	6884,0	11014,4
7	700	7,14	102	197,1	315,4	512,5	788,4	1261,5	1971,1	3153,7	5124,8	7884,4	12615,0
∞	800	8,16	116	221,3	354,1	575,4	885,3	1416,5	2213,3	3541,2	5754,5	8853	14164,8
6	006	9,18	131	246,4	394,3	640,7	985,7	1577,1	2464,3	3942,9	6407,1	9857,1	15771,4
10	1000	10,20	145	270,5	432,8	703,4	1082,1	1731,4	2705,3	4328,4	7033,7	10821	17313,6
11	1100	11,21	160	295,7	473,2	768,9	1183,0	1892,8	2957,5	4732,0	7689,5	11829,9	18927,9
12	1200	12,30	175	321,5	514,4	836	1286	2057,6	3215,0	5144	8329	12860	20576
13,8	1380	14,06	200	363,75	285								
					POOT	IG TOIN ®	DOOTE® HIGH DRESCHIRE METERS	ICTEDS					

	665-600	100			946	1116	1286	1455	1795	2134	2474	2813	3492	4171								
	665-1480	100	Nm³/H		946	1116	1286	1455	1795	2134	2474	2813	3492	4171	4850	5122	5529	6208	6887	8244	9874	10146
	665-740	100	Corrected Capacity at Meter Pressure -in Nm3/H		946	1116	1286	1455	1795	2134	2474	2813	3492	4171	4850	5122						
	665-300	100	at Meter P		946	1116	1286	1455	1795	2134												
ROOTS® HIGH PRESSURE METERS	G16-1480	25	ed Capacity		237	279	322	364	449	534	619	703	873	1043	1213	1281	1382	1552	1722	2061	2469	2537
1 PRESSUI	G16-740	25	Correct		237	279	322	364	449	534	619	703	873	1043	1213	1281						
OTS® HIGI	616-300	25			237	279	322	364	449	534												
RO			JRE	PSIG	125	150	175	200	250	300	350	400	200	009	700	740	800	006	1000	1200	1440	1480
		را// _۱	METER OPERATING PRESSURE	kg/cm2	8,8	10,5	12,3	14,1	17,6	21,1	24,6	28,1	35,2	42,2	49,2	52,0	56,2	63,3	70,3	84,4	101,2	104,1
	MODEL	BASE RATING (m³/h)	TER OPERAT	кРа	862	1034	1207	1379	1724	2068	2413	2758	3447	4137	4826	5102	5516	6205	6895	8274	9929	10204
		BASI	ME	Bar	8,6	10,3	12,1	13,8	17,2	20,7	24,1	27,6	34,5	41,4	48,3	51,0	55,2	62,1	69,0	82,8	99,3	102,1

Imperial and Metric Technical Data

TECHNICAL DATA	UNITS	8C175*	110175*	156175*	2M175	3M175	5M175	7M175	8.8M175	11M175	16M175	23M175
Rase Rating (D Max)	ac th	800	1100	1500	2000	3000	5000	7000	A/N	11000	16000	23000
ממום אמווים אל ווימיין	m³/h	22.6	31.0	42.5	56.6	85.0	141.5	2000	250.0	310.0	450.0	650.0
Max. Operating Pressure (MAOP)*	psig	175	175	175	175	175	175	175	N/A	175	175	175
0	KPa RPa	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200
Rangeability +/- 1%	ratio	26:1	31:1	40:1	68:1	76:1	120:1	67:1	70:1	124:1	116:1	40:1
Start Rate	cfh	2.8	2.3	1.9	1.9	2.1	1.2	5.3	N/A	3.9	3.2	23.0
170	m³/h	0,0790	0,0651	0,0549	0,0538	0,0595	0,0340	0,1509	0,1510	0,1099	0,0917	0,6513
Stop Kate	CIII m³/h	7.0 0.575	1.7 0.0493	1.b 0.0445	1.1 0.0311	0.051	0.0	3.4 0 096	0 0960 0	3.2 0.0915	1.9 0.0535	18.U 0 5097
Avg. Differential, 100% Flow	in. w.c.	0.5	0.6	0.8	0.7	1.1	0,0227	1.6	N/A	1.6	2.1	1.3
	mbar	1,1	1,5	1,9	1,6	2,6	2,6	4,0	2,8	4,0	5,2	3,1
Drive Rate CTR, CD	cf/rev	10	10	10	10	10	10	10	N/A	10	100	100
	m³/rev	0,1	0,1	0,1	0,1	0,1	- 6	1 9	1	- 6	1000	
Drive Kate IC, ID	ct/rev m³/rev	100	100	100	100	100	100	100	N/A	100	1000	N/A
Nominal Pine Size) II	7 6	7	7	7	7	2 c.	27	N/A	10	4	9
	шш	50,8	50,8	50,8	50,8	50,8	° 8	° 8	80 or 100	100	100	150
Flange-to-Flange	.⊑	6-3/4	6-3/4	6-3/4	6-3/4	6-3/4	6-3/4	9-1/2	N/A	9-1/2	9-1/2	16
	шш	172	172	172	172	172	172	241,3	241,3	241,3	241,3	406,4
Flange Connection	ANSI	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF	125#FF
Net Weight - CTR Version	lbs.	18	22	24	76	29	35	52	N/A	09	82	202
	kg	8,2	10,0	10,9	11,8	13,2	15,9	23,6	29,0 or 31,0	27,2	38,6	91,6
TECHNICAL DATA	UNITS	38M175	56M175	102M125	1M300	1M740	1M1480	3M300	3M740	3M1480	5M1480	7M1480
Base Rating (Q Max.)	acfh	38000	26000	102000	1000	1000	1000	3000	3000	3000	2000	7000
)	m³/h	1,050.0	1,575.0	2,875.0	28,3	28,3	28,3	85,0	85,0	85,0	141,6	198,2
Max. Operating Pressure (MAOP)*	psig	175	175	125	300	740	1480	300	740	1480	1480	1480
	kРа	1,200	1,200	860	2,065	5,100	10,200	2,065	5,100	10,200	10,200	10,200
Rangeability +/- 1%	ratio _{ofb}	90:1	53:1	38:1	30:1	18:1	18:1	50:1	77:1	77:1	28:1 7 6	60:1
Stall hate	. c III	0.72	1 1 2 2 7	2 2000	0.15	0.700	6.2	0.0595	0.00	0.0000	0.7	0.0
Ston Rate	III-H	0,7040	1,132/	3,3900	0,0330	0,0,0	0,0,0	0,0393	0,0000	0,000,0	0,133 4 6	0,1042
	m³/h	0,5663	0,0283	3,1149	0,0311	0,0566	0,0566	0,0510	0,0708	0,0708	0,057	0,1303
Avg. Differential, 100% Flow	in. w.c.	1.9	2.2	2.0	0.2	0.4	0.3	1.0	1.3	1.35	2	2
Drive Rate CTR CD	mbar cf/rev	4,7 100	5,5 100	5,0 100	0,5 10	1,0 10	0,/ 10	2,5	3,2 10	3,4 10	2,24	4,26
	m³/rev		10	10	0,1	0,1	0,1	0,1	0,1	0,1		
Drive Rate TC, TD	cf/rev	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	m³/rev	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nominal Pipe Size	.i.	9	∞ (10	1-1/2	2	2	2	2	2	က	က
i	ш.	150	200	254	50.8	50.8	50.8	50.8	50.8	50.8	79.2	۳ ;
Flange-to-Flange	. ⊑	18	21	28	6-3/4	10-3/4	10-3/4	6-3/4	10-3/4	10-3/4	14-3/4	14-3/4
Flance Connection	mm VNCI	45/,7 125#EE	533,4 125#FE	/11,2 195#EE	300#EE	300#DE	2/3 600#PE	3/1/2	300#PE	2/3 600#PE	3/4,65 600#PF	3/4,65
Net Weight - CTR Version	lbs.	143#11 244	284	7390	26.5	107	107	29	107	107	215	220
	ka.	110.7	128.8	1084.1	12.0	48.5	48.5	13.2	48.5	48.5	97.52	62 66
* Available with 200 PSIG Rating	0	. () -)	1) [).) ()	1) .	1	

G-Rating Technical Data

(AAC) (ABC) (ABC) <th< th=""><th>Technical Data</th><th>UNITS</th><th>616</th><th>625</th><th>640</th><th>665</th><th>6100</th><th>6160-3"</th><th>6160-4"</th><th>6250</th><th>6400</th><th>6650</th><th>61000</th></th<>	Technical Data	UNITS	616	625	640	665	6100	6160-3"	6160-4"	6250	6400	6650	61000
bar 12	Base Rating (qMax.)	m³/h	25,0	40,0	65,0	100,0	160,0	250,0	250,0	400,0	650,0	1,000.0	1,600.0
ratio 28.1 37.1 78.1 89.1 135.1 70.1 70.1 103.1 40.1 85.1 m^3/h $0,0790$ $0,0549$ $0,0538$ $0,0340$ $0,0340$ $0,1510$ $0,1510$ $0,0917$ $0,06513$ $0,7646$ m^3/h $0,0575$ $0,0445$ $0,0311$ $0,0510$ $0,0207$ $0,0960$ $0,0963$ $0,0917$ $0,7663$ $0,7$	Max Operating Pressure (MAOP)	bar	12	12	12	12	12	12	12	1200	1200	1200	1200
m^3/h 0,0579 0,0549 0,0538 0,0586 0,0340 0,1510 0,01510 0,0510 0,0527 0,0960 0,0535 0,0535 0,5097 0,5663 m^3/h 0,0575 0,0445 0,0311 0,0510 0,0227 0,0960 0,0535 0,5097 0,5663 mbar 1,6 1,9 2,2 3,2 3,7 2,8 2,8 3,9 3,1 4,7 m^3/rev 0,1 0,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 m^3/rev 0,1 0,1 0,1 1,0 1	Rangeability +/- 1%	ratio	28:1	37:1	78:1	89:1	135:1	70:1	70:1	103:1	40:1	85:1	53:1
m³/h 0,0575 0,0445 0,0311 0,0510 0,0227 0,0960 0,09635 0,0503 0,5663 0,5663 mbar 1,6 1,9 2,2 3,2 3,7 2,8 2,8 3,9 3,1 4,7 m³/rev 0,1 0,1 0,1 1,0	Start Rate	m³/h	0,0790	0,0549	0,0538	0,0595	0,0340	0,1510	0,1510	0,0917	0,6513	0,7646	1,1327
mbar 1,6 1,9 2,2 3,2 3,7 2,8 2,8 3,9 3,1 4,7 m³/rev 0,1 0,1 0,1 1,0<	Stop Rate	m³/h	0,0575	0,0445	0,0311	0,0510	0,0227	0,0960	0960'0	0,0535	0,5097	0,5663	0,8212
$m^3/\text{fee}/$ $0,1$ $0,1$ $0,1$ $1,0$	Avg. Differential, 100% Flow	mbar	1,6	1,9	2,2	3,2	3,7	2,8	2,8	3,9	3,1	4,7	5,5
m³/fev 50 50 50 80 80 100 100 150 150 mm 172 172 172 172 241,3 241,3 241,3 406,4 457,2 ANSI 125# FF 125# FF <th>Drive Rate CTR, CD</th> <th>m³/rev</th> <th>0,1</th> <th>0,1</th> <th>0,1</th> <th>0,1</th> <th>1,0</th> <th>1,0</th> <th>1,0</th> <th>1,0</th> <th>1,0</th> <th>1,0</th> <th>10,0</th>	Drive Rate CTR, CD	m³/rev	0,1	0,1	0,1	0,1	1,0	1,0	1,0	1,0	1,0	1,0	10,0
mm 50 50 50 80 80 100 100 150 150 150 mm 172 172 172 172 172 241,3 241,3 241,3 406,4 457,2 ANSI 125# FF 125# FF <t< th=""><th>Drive Rate TC, TD</th><th>m³/rev</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Drive Rate TC, TD	m³/rev											
mm 172 172 172 172 241,3 241,3 241,3 406,4 457,2 ANSI 125# FF	Nominal Pipe Size	mm	20	20	20	20	80	80	100	100	150	150	200
ANSI 125# FF 1	Flange-to-Flange	mm	172	172	172	172	172	241,3	241,3	241,3	406,4	457,2	533,4
Inches 5/8-11 5/8-11 5/8-11 5/8-11 5/8-11 5/8-11 5/8-11 3/4-10 3/4-10 3/4-10 kg 8 11 12 13 16 29 31 39 92 111	Flange Connection	ANSI	125# FF										
kg 8 11 12 13 16 29 31 39 92 111	Bolt Size**	Inches	5/8-11	5/8-11	5/8-11	5/8-11	5/8-11	5/8-11	5/8-11	3/4-10	3/4-10	3/4-10	3/4-10
	Net Weight - CTR Version	kg	∞	11	12	13	16	29	31	39	95	1111	129

